Precipitation Calibration Updates

Yan Luo Yuejian Zhu, Dingchen Hou and Bo Cui

Global Ensemble Group
Environmental Modeling Center

THORPEX-HYDRO meeting, 17 September 2010

Objective

 Develop and enhance bias-correction and downscaling techniques that are applicable to NCEP precipitation ensemble forecasts to gain more reliable and much finer resolution products.

NCEP GFS/GEFS precipitation forecast products

Level 1 products- model direct output

Level 2 products - 1st Post-processing

6h-QPF—
High Reso. GFS
Low Reso. GEFS/CTL
20 GEFS ensembles:
1 deg, globally

Bias corrected
6h-QPF/PQPF —
High Reso. GFS
Low Reso. GEFS/CTL
20 GEFS ensembles:
1 deg, globally
More reliable

Level 3 products – 2nd Post-processing

Green: operational, verified against

1deg CCPA

Blue: developed and tested, verified

against 1 deg CCPA

Purple: under development, verified

against 5KM NDGD CCPA

Downscaled 6h-QPF/PQPF —

High Reso. GFS Low Reso. GEFS/CTL 20 GEFS ensembles:

5KM, NDGD, CONUS

Much finer

Current capabilities in calibration of QPF/PQPF for NCEP ensembles

- Bias correction for NCEP operational precipitation ensemble forecasts at higher temporal and spatial resolution
- An upgrade from May 2004 implementation
- CDF based QPF bias-correction algorithm
- Select 9 thresholds: 0.2, 1, 2, 3.2, 5, 7, 10, 15, 25 mm/6hrs
- Construct Cumulative Frequency Distribution over CONUS
- Use decaying weight = ~0.033 (30 days decaying)
- CCPA used as observations
- Bias corrected at 1 degree model output grid, globally
- 4 cycles per day, 6-hr amounts
- Every 6 hours, out to 384 hours
- GFS, GEFS 20+1 members

How the Precipitation Calibration System Works

CDF₀: initialized from any a 30-day average of CDF

How the Precipitation Calibration System Works (continued)

Bias Correction Experiment

- Experiment period: January 1, 2009 February 28, 2010
- Scores: ETS,TSS, and Bias Score
- Maps: QPF, PQPF
 - Verified against CCPA
 - Nine thresholds 0.2, 1, 2, 3.2, 5, 7, 10, 15 25 mm/6-h
 - CONUS domain
 - 00 UTC forecast cycle
 - Decaying weight W=0.033 (30day's decay)

Significantly reduced bias

Mostly improved ETS

QPF EXAMPLE

NCEP/GFS Quantitative Precipitation Forecast (QPF) Ini: 2010012400

- Larger reduction in precipitation extent
 Slight reduction in QPF amounts
- Much closer to OBS(CCPA)

PQPF EXAMPLE

Ens Prob of Precip Amount Exceeding 0.01 inch (0.254 mm/6hrs) Ini: 2010012400

- Larger reduction in precipitation extent
 Slight reduction in QPF amounts
- Agree much with OBS(CCPA)

Decaying averaging CDF

Calculate for Obs and Fcst respectively

Sensitivity experiments:

Chose different weight:

Larger weight => shorter decaying time => Use less historical info. < == > more weight on recent data

Smaller weight => Longer decaying time => Use more historical info.

Work in Progress

- Can do a very good job on 1st moment adjustment, may be not skillful for 2nd moment adjustment.
- Bias correction based on CDFs over CONUS is completed. Expect to improve by using respective regional RFC CDFs instead of CONUS CDFs given RFC area masks at 1 degree lat/lon grid provided by OHD.
- Downscaling vector needs RFC area masks at NDGD grid to calculate CDFs. (Also need OHD to provide the NDGD grid.)

NCEP grids

The 1 degree grid RFC mask is being used in calculation of Cumulative Distribution Functions (CDFs) for each RFC mainly for bias correction, as well as some verification statistics at regional scale.

NCEP grids

The RFC mask on NDGD grid is required to calculate Cumulative Distribution Functions (CDFs) for each RFC mainly for downscaling, as well as some verification statistics at regional scale.

